Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32.

نویسندگان

  • C Liu
  • J M Zachara
  • Y A Gorby
  • J E Szecsody
  • C F Brown
چکیده

The influence of Fe(II) on the dissimilatory bacterial reduction of an Fe(III) aqueous complex (Fe(III)-citrate(aq)) was investigated using Shewanella putrefaciens strain CN32. The sorption of Fe(II) on CN32 followed a Langmuir isotherm. Least-squares fitting gave a maximum sorption capacity of Qmax = 4.19 x 10(-3) mol/10(12) cells (1.19 mmol/m2 of cell surface area) and an affinity coefficient of log K = 3.29. The growth yield of CN32 with respect to Fe(III)aq reduction showed a linear trend with an average value of 5.24 (+/-0.12) x 10(9) cells/mmol of Fe(III). The reduction of Fe(III)aq by CN32 was described by Monod kinetics with respect to the electron acceptor concentration, Fe(III)aq, with a half-saturation constant (Ks) of 29 (+/-3) mM and maximum growth rate (micromax) of 0.32 (+/-0.02) h(-1). However, the pretreatment of CN32 with Fe(II)aq significantly inhibited the reduction of Fe(III)aq, resulting in a lag phase of about 3-30 h depending on initial cell concentrations. Lower initial cell concentration led to longer lag phase duration, and higher cell concentration led to a shorter one. Transmission electron microscopy and energy dispersive spectroscopy revealed that many cells carried surface precipitates of Fe mineral phases (valence unspecified) during the lag phase. These precipitates disappeared after the cells recovered from the lag phase. The cell inhibition and recovery mechanisms from Fe(II)-induced mineral precipitation were not identified by this study, but several alternatives were discussed. A modified Monod model incorporating a lag phase, Fe(II) adsorption, and aqueous complexation reactions was able to describe the experimental results of microbial Fe(III)aq reduction and cell growth when cells were pretreated with Fe(II)aq.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydriteunder advective flow

Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucida...

متن کامل

The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens

Microbial dissimilatory iron reduction (DIR) is widespread in anaerobic sediments and is a key producer of aqueous Fe(II) in suboxic sediments that contain reactive ferric oxides. Previous studies have shown that DIR produces some of the largest natural fractionations of stable Fe isotopes, although the mechanism of this isotopic fractionation is not yet well understood. Here we compare Fe isot...

متن کامل

Inhibition of biological reductive dissolution of hematite by ferrous iron.

Bacterial dissimilatory iron reduction is self-inhibited by the production of ferrous [Fe(II)] iron resulting in diminished iron reduction as Fe(II) accumulates. Experiments were conducted to investigate the mechanisms of Fe(II) inhibition employing the dissimilatory metal-reducing bacterium Shewanella putrefaciens strain CN32 under nongrowth conditions in a system designed to minimize precipit...

متن کامل

Kinetic analysis of the bacterial reduction of goethite.

The kinetics of dissimilatory reduction of goethite (alpha-FeOOH) was studied in batch cultures of a groundwater bacterium, Shewanella putrefaciens, strain CN32 in pH 7 bicarbonate buffer. The rate and extent of goethite reduction were measured as a function of electron acceptor (goethite) and donor (lactate) concentrations. Increasing goethite concentrations increased both the rate and extent ...

متن کامل

Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation.

Natural organic matter (NOM) enhancement of the biological reduction of hematite (alpha-Fe2O3) by the dissimilatory iron-reducing bacterium Shewanella putrefaciens strain CN32 was investigated under nongrowth conditions designed to minimize precipitation of biogenic Fe(II). Hydrogen served as the electron donor. Anthraquinone-2,6-disulfonate (AQDS), methyl viologen, and methylene blue [quinones...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 35 7  شماره 

صفحات  -

تاریخ انتشار 2001